Thursday, January 29, 2009

New Philosophy of Science Blog

Gabriele Contessa has come up with a great idea: a group blog for general philosophy of science. Check it out at It's Only A Theory. So far the other bloggers are Marc Lange, Otavio Bueno and myself. But I expect the list and the range of topics addressed there to grow quickly!

Friday, January 23, 2009

Sullivan on MacBeth on Frege's Logic

In the long tradition of negative book reviews, Peter Sullivan launches a fairly sustained attack on Macbeth's book on Frege's logic. Some highlights or lowlights, depending on your taste for such things:
In the short term, this book will probably make quite a stir; one hopes that in the longer term, it will be seen to have done no lasting damage to Frege studies. It is an extraordinary work, whose central contentions are remarkable chiefly for their perversity.
Because she so undervalues the achievement of Begriffsschrift, Macbeth is content to have no account at all of what Frege might have been thinking when he wrote it.
In this book, in her accounts both of the development of Frege’s own thought and of its relation to the tradition it founded, Macbeth does the history of logic backwards. She portrays Frege as reacting against a background of doctrine that the works of Carnap, Tarski, Quine et alii have somehow already magically set in place; and she portrays him as reacting against that background for reasons which he has yet to discover. This does not make for a plausible story.

Wednesday, January 14, 2009

Bleg: Aufbau Literature Since 1990

Here is a preliminary bibliography of places to look for focused discussions of the Aufbau since 1990. I have not always given the titles of papers in a collection if that collection has several different papers.

Suggestions welcome! Please also let me know if you have a view about the most important issues for our understanding and interpretation of the Aufbau. This is for a Philosophy Compass article that I am currently working on.

Tuesday, January 13, 2009

Scientific American Profile of Penelope Maddy

A rare glimpse of how someone became a philosopher of mathematics: Maddy describes the route from being a Westinghouse finalist to philosopher. Strangely, the profile does not mention her most recent book.

New Book: Grounding Concepts: An Empirical Basis for Arithmetical Knowledge

C. S. Jenkins' relatively new book looks like an exciting contribution to the epistemology of mathematics that aims to relate debates in the philosophy of mathematics to some more recent work on concepts and the a priori. Based on the title and on her earlier paper, I had expected that Jenkins aimed to defend some kind of neo-Millian view of arithmetic, in line with Kitcher. But this seems to have been a mistake. Her preface lays out a clear desire to defend the a priority of arithmetic:
(1) that arithmetical truths are known through an examination of our arithmetical concepts;
(2) that (at least our basic) arithmetical concepts map the arithmetical structure of the independent world;
(3) that this mapping relationship obtains in virtue of the normal functioning of our sensory apparatus. (x)
It is (1) and (3) which might not seem to initially sit well together, so I look forward to seeing how Jenkins can reconcile some of kind a priorism with some kind of empiricism.

Sunday, January 4, 2009

Models and Simulations 3 Program

After a bit of the delay, the program for the Models and Simulations 3 conference is now online. The conference will be held at the University of Virginia and will run all day on March 6th and 7th and the morning of March 8th.

Obvious highlights of the program are the two keynote speakers: Mark Bedau and Patrick Suppes. But there are about 50 other speakers, making this one of the larger special-topic conferences. Judging from the titles, it looks like a good mix of papers focused on the different sciences as well as some of the main conceptual issues in modeling and simulation.

My paper is grandly titled "Methods of Multiscale Modeling" and will be my attempt to integrate issues about scaling and the topic of an earlier post into broader epistemological issues about modeling and scientific reasoning. Hopefully a draft will appear here soon!

Friday, December 19, 2008

Meyer on Field-style Reformulations of Statistical Mechanics

Glen Meyer offers an in-depth discussion of Field's program to nominalize science with special emphasis on the challenges encountered with classical equilibrium statistical mechanics (CESM). He makes a number of excellent points along the way, but what I like most is his focus on the prevalence of an appeal to what some call "surplus" mathematical structure, i.e. mathematics that has no natural physical interpretation. As he argues, Field could reconstruct configuration spaces for point particles using physical points in space-time, but would face difficulties extending this approach to phase spaces and probability distributions on phase spaces.

One novelty of the paper is a distinction between interpretation and representation. Mathematical theories have some mathematical terms with a semantic reference and a representational role, but other mathematical terms may have a semantic reference with no representational role. When idealizations involve this latter kind of term, Field-style reformulations are in trouble. For example, Meyer discusses the need to treat certain discrete quantities as continuous in the derivation of the Maxwell-Boltzmann distribution law:
The intended ('intrinsic') interpretations of axioms describing a certain structure forces that structure to represent, as it were, in its entirety, i.e., that this structure be exemplified in the subject matter of the theory. Any introduction of the idealization above at the nominalistic level will therefore force us to adopt assumptions about the physical world that the platonistic theory, despite its use of this idealization, does not make. Unlike the case of point particles, this idealization is not part of the nominalistic content of the platonistic theory and therefore does not belong in any nominalistic reformulation. Without it, however, we have no way of recovering this part of CESM (p. 37).
Here we have a derivation that ordinary theories can ground, but that Field-style nominalistic theories cannot. I agree with Meyer here, but it raises the further issue: why is it so useful to make these sorts of non-physical idealizations? It may just be a pragmatic issue of convenience, or perhaps there is something deeper to say about how the mathematics contributes without representing? (See Batterman's recent paper for one answer.)